Risk-Based Transportation Planning for Uncertainty

A Partnership between the Florida Department of Transportation and Three Florida Universities – Florida State University, University of Florida, and University of South Florida

Idaho APA Conference, October 2020

Presenters

Jennifer Z. Carver, AICP Florida Department of Transportation

Dennis J. Smith, AICP Florida State University

Tia Boyd University of South Florida

Ruth L. Steiner, Ph.D. University of Florida

Assessment of Planning Risks and Alternative Futures for the Florida Transportation Plan (FTP) Update

How should Florida's transportation system evolve to support mobility in the future?

How might the planning, policy setting process and implementation of the FTP change to accommodate risk and uncertainty?

How might the FTP goal areas and visions of alternate futures change in response to changes in risk and uncertainty?

How will the enhanced understanding of risk be incorporated into FDOT's business, from preliminary planning and design through project implementation?

Participants and Tasks

- Three Universities
 - University of South Florida, Florida State University,
 & University of Florida
 - Involvement of students
- A common scope and set of tasks
- Non-collaboration during the research phase was a requirement

Five Areas of Inquiry

Population

Florida's population will continue to grow

Florida will continue to have an aging population

Economics

Other sources for transportation funding will need to be explored

Public Private Partnerships

Environment

Climate change risks in Florida include sea level rise, extreme temperatures, and storm surge

Florida's population will become more sprawled

Technology

Autonomous vehicles will impact the built environment and how people travel

Cyber security and user privacy will need to be considered when implementing new technologies

Global Issues

Threats of terrorism and global conflict are possible factors that can impact the transportation network

Florida should plan for an increase in volume for global trade routes Poll Results: What are the greatest hazards that the transportation system in your community will face over the next 25 years?

Literature Review

Population

Rapid Population Growth
Congestion from
Suburbanization
Population Decline
Immigration
Political Polarization
Aging Population

Economic

Another Recession

Increasing Fuel Costs
Growing Household
Income Inequality
Financing New
Infrastructure
Worsening Traffic
Congestion
Decreasing Transportation

Frunding

Environment

Storm Surge
Sea Level Rise
Extreme Weather
Inland Flooding
Open Space Reductions
Extreme Temperatures
Declining Water Quality
Fire Hazards
Water Scarcity

Technology

Cyber Security

Outdated Government
Regulations
User Privacy

Lack of Funding for Smart
Infrastrucutre

Slow Adoption of New
Technology

Global Issues

Rising Energy Prices
Global Recession
Terrorism
Climate Refugees
Global Epidemics
Global Conflict
Food Crises

Plan Review

Reviewed State DOT's Long-Range Transportation Plans

Identified best practices in risk assessment:

- What risks are addressed?
- How are they being addressed?
- Where in the planning process?
- How is risk assessment integrated into the planning process?

			Pla	n Ty	pe							M	lodes	Addr	essec	1					Inve	estm	ent
State	Corridor-based	Financially- realistic	Needs-based	Performance-based	Policy-based	Project-based	Vision-based	All Roads	Aviation	Bicycle	Connected/ Autonomous Vehicles	Freight Modes	Highways	Intercity Passengers	Multimodal System	Pedestrian	Pipelines	Ports	Shared Mobility	Transit	Funding Strategies	Needs Estimates	Revenue Estimates
Florida				X	X		x	x	X	×	X	X	X	x	x	×		X	x	X	×	x	x
California				x		x		x	x	X	x	X	X	X	x	×	x	X		X			x
Georgia		X		X				x	x	X		X	X		X	X		X		X	x	x	X
Illinois					X		X	x	X	x		X	X	X	x	X	x	X		X	X		
Michigan	x		x					x				x	X	x	x					X			x
Minnesota				X	X			x	X	×		x	X	X	x	X		X	X	X	X	X	x
Missouri		x	X	X			X	X	X	X		X	X	X	X	x		X	x	X		X	x
New Mexico				X			X	X	X	X	X	X	X	X	X	X			x	X	X		X
New York	x				X			x	X	x		X	X	X	x	×	x	X	x	X	X		
North Carolina			x				X	X	X	×		X	X	X	X	X		X		X	x	X	X
Ohio					X		X	X	X	x	-	X	X	X	x	X		X		X	X	X	x
Texas			x	X				X	X	x		X	X	X	x	X	X	X		X	x	X	x
Utah					X	x		x	x	x	x	X	X		X	X	x		x	X	X	18	x

Risk to Assets

Promote an **agile, resilient, and quality infrastructure** (FDOT, 2015 FTP Policy Element),

Steps:

- Established a preliminary list of assets (2015 Florida Transportation Asset Management Plan)
- Reviewed assets included in various state LRTPs to expand categories (CA, GA, MN, MI, NY, UT)
- Accessed extensive asset databases maintained by state agencies (FDOT, DEP)
- Grouped asset vulnerability by type; transportation, environmental, economic
- Assigned of risk levels based on expert polling, validated by in-class review, and confirmed by final expert review.

Table 4.7: C	Cumulative Risk to Assets
Category	Cumulative Risk to Assets
Assets	
Transit	58
Airports	55
Seaports	54
Rail	45
US Highways	43
Interstates	42
Toll Roads	42
Bridges	41
State Roads	38
County Roads	38
Scenic Highways	38
Amtrak	37
Facilities	36
Trails	34
Bike Lanes	32
Spaceports	30
Traffic signals	24
State Parks	43
National Parks	41
Canals	30
Wetlands	29
Springs	27
Lakes	26
Rivers/streams	26
Protected Lands	26
Oil and gas wells	31
Mines	30

Tools to Evaluate Risk and Uncertainty

Risk Register

Flexible and customizable

Comprehensive tool

Useful at different stages of planning process

- Project evaluation
- Stakeholder engagement

	Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
		T	hrea	its				
	Lack of public acceptance of proposed							
	projects	5	5	4	100	С	Critical	Mitigate
	Inadequate funding and economic							
	downturns restrict ability to expand							Mitigate &
	travel options	5	4	4	80	Е	Extreme Risk	Coordinate
	Increased urban sprawl and auto-							Coordinate &
뺻	dependent development	5	5	3	75	С	Extreme Risk	Transfer
Goal 4: More transportation choices for people and freight	Limited system connectivity due to							
anc	poorly coordinated agency deployment	4	4	4	64	N	High Risk	Coordinate
ple	Increased travel demand due to	_						Mitigate &
eol	population growth	5	3	3	45	С	Moderate Risk	Coordinate
or o	Transit investment fails to increase or				26			
es f	attract sufficient ridership	4	3	3	36	С	Moderate Risk	Mitigate
<u>ö</u>	Inequity of AV applications for							Coordinate &
된	growing disadvantaged population	3	3	3	27	N	Moderate Risk	Transfer
Ęį	Societal shifts in transportation							
ıta	preferences and needs in light of			•		_	. 5: 1	
sbo	changing technology	4	2	3	24	Е	Low Risk	Mitigate
ran	Inadequate EV charging					_		Coordinate &
ā	infrastructure	4	2	2	16	С	Low Risk	Transfer
§				nitie				C)
4	Improved first and last mile connectivity	y yd i	ides	our	cing an	d rid	esharing	Share Exploit &
joal	Ease of integrated corridor management	(ICI	M) aı	nd m	ultimo	odal i	ntegration	Share
U	More mobility options for aging populati	ion	toor	200	rc and	ucar	s with limited	Enhance &
	mobility	1011,	icei	iage	is, aiiu	usei	3 With milited	Share
	Improved public information (or public a	war	ene	ss) a	cross d	iffer	ent modes of	Enhance &
	transportation			, .				Share
			-		,			Exploit &
	Ability to accommodate increase density and mix of uses							
	Improved public transportation service	s in	rura	ıl are	eas an	d be	tween rural	Exploit &
	and urban areas							Share
	Expanded interregional travel options fo	r res	side	nts, v	visitors	s, and	l freight	Enhance
	Reduced travel demand due to e-comme	erce,	tele	com	nmunic	cation	ns and	
	telecommuting							Exploit
	UAVs reduce freight costs through the us	se of	last	-mil	e deliv	ery s	ervices	Share

Risk Identification

Potential threat or opportunity for each agency goal

Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
Lack of public acceptance of proposed							
projects	5	5	4	100	С	Critical	Mitigate
Inadequate funding and economic							
downturns restrict ability to expand							Mitigate &
travel options	5	4	4	80	Е	Extreme Risk	Coordinate
Increased urban sprawl and auto-							Coordinate &
dependent development	5	5	3	75	С	Extreme Risk	Transfer
Limited system connectivity due to							
dependent development Limited system connectivity due to poorly coordinated agency deployment	4	4	4	64	N	High Risk	Coordinate

Risk Evaluation

25 – 49 Moderate Risk

50 – 74 High Risk

75 – 99 Extreme Risk

■ 100 - 125 Critical Risk

<u> </u>							.00 – 125 Ci
Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
	T	hrea	ats				
Lack of public acceptance of proposed							
projects	5	5	4	100	С	Critical	Mitigate
Inadequate funding and economic							
downturns restrict ability to expand							Mitigate &
travel options	5	4	4	80	Е	Extreme Risk	Coordinate
Increased urban sprawl and auto-							Coordinate &
dependent development	5	5	3	75	С	Extreme Risk	Transfer
Limited system connectivity due to							
poorly coordinated agency deployment	4	4	4	64	N	High Risk	Coordinate

Consequence Management

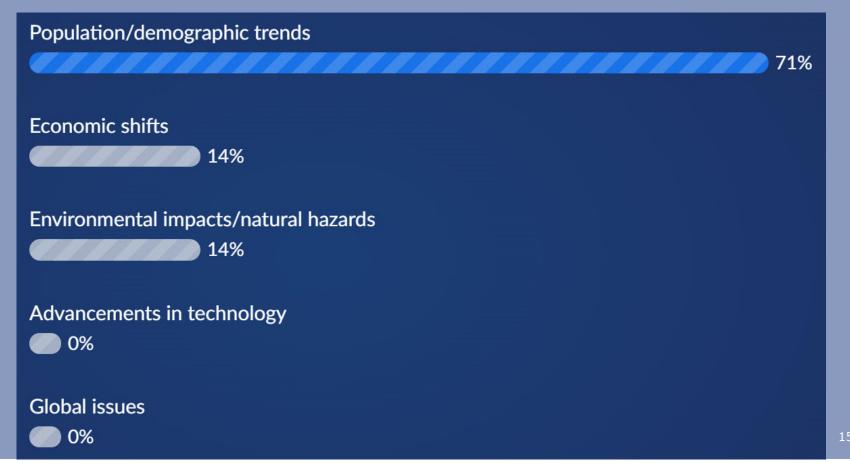
Threats Avoid

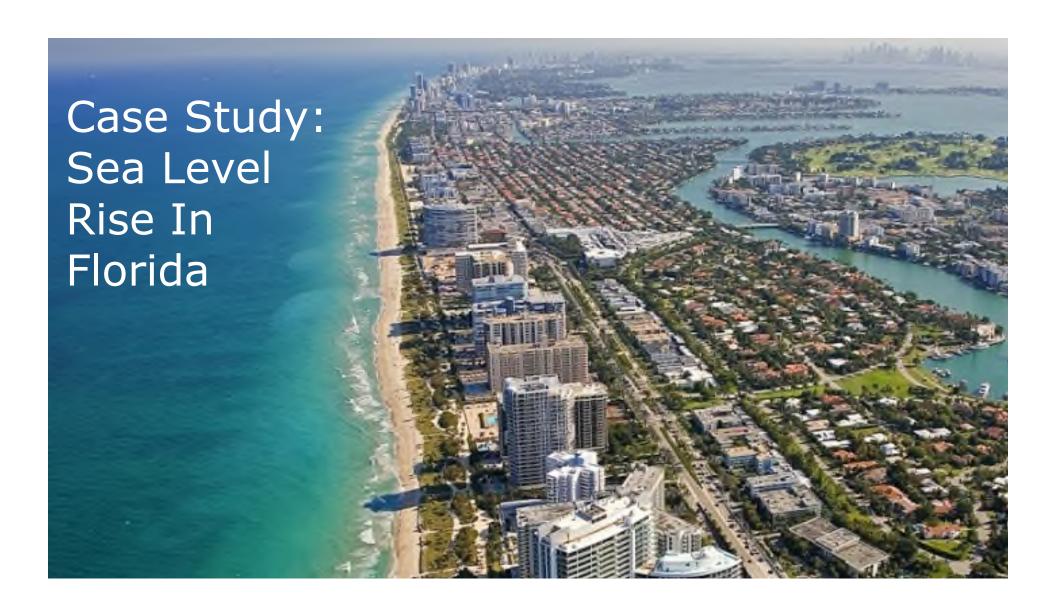
Mitigate

Transfer

Coordinate

Opportunities


Exploit


Share

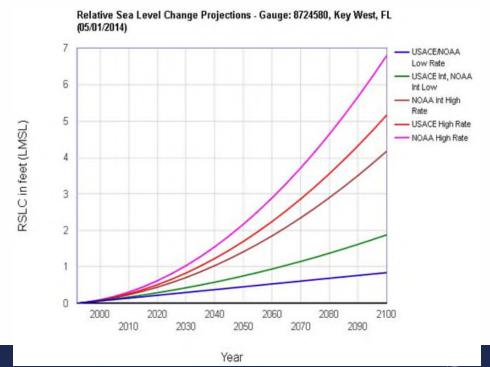
Enhance

							rumate
Risk Event	Likelihood	Consequence	Vulnerability	Overall Risk	Timeframe	Risk Level	Consequence Management
lack of mublic accompany of managed		mea	113				
Lack of public acceptance of proposed				4.00			
projects	5	5	4	100	С	Critical	Mitigate
Inadequate funding and economic							
downturns restrict ability to expand							Mitigate &
travel options	5	4	4	80	Е	Extreme Risk	Coordinate
Increased urban sprawl and auto-							Coordinate &
dependent development	5	5	3	75	С	Extreme Risk	Transfer
Limited system connectivity due to							
poorly coordinated agency deployment	4	4	4	64	N	High Risk	Coordinate

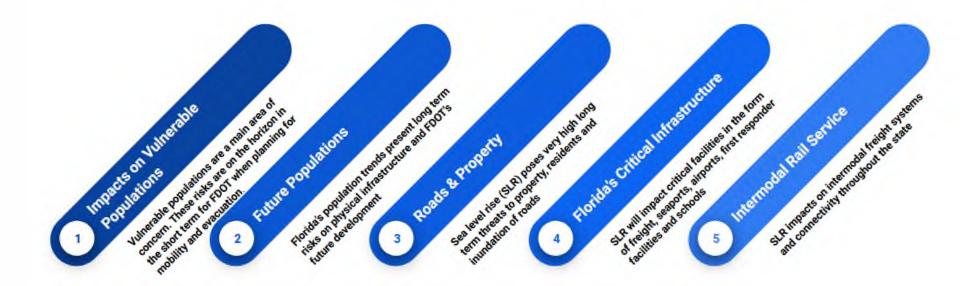
Poll Results: Select the most disruptive or extreme event that may affect the future of transportation in Idaho

Sea Level Rise Scenarios

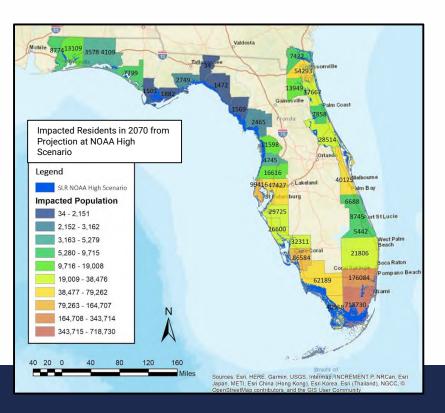
Sea Level Rise @ 2080

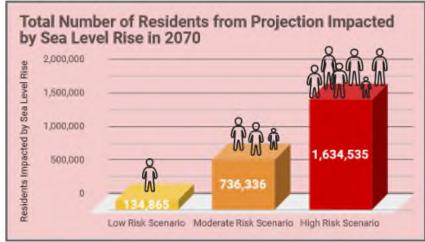

Curve 1 = USACE and NOAA Low

Curve 3 = NOAA Intermediate

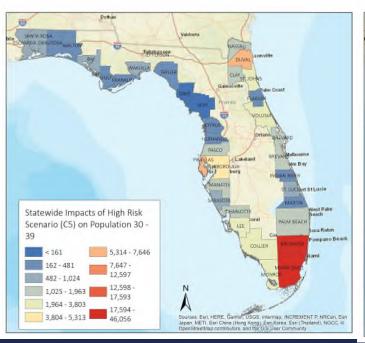

Curve 5 = NOAA High

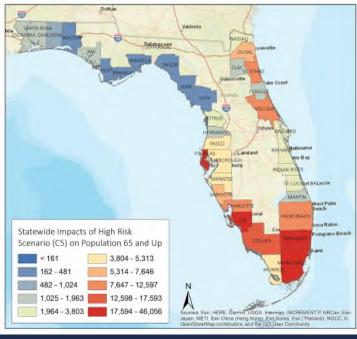
SEA LEVEL SCENARIO SKETCH PLANNING TOOL




Fall 2018 Student Studio Work

Future Populations


Why Focus on Future Populations?


- People moving inland
 - Increased inland road capacity
 - Physical deterioration of existing roads
 - Changes in land use and new roads
- Loss of future taxable land
- Changing travel patterns

Vulnerable Populations

Why Focus on Vulnerable Populations?

- Shift in travel patterns and mobility
- Barriers to certain forms of travel
- Vulnerable when thinking of extreme cases like evacuation routes

Highest Concentrations of 65 Up impacted by permanent flooding

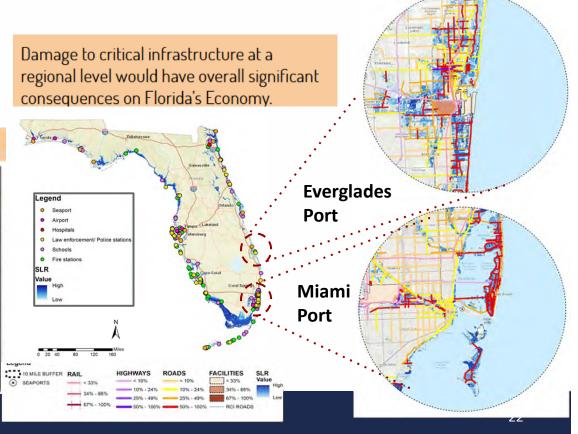
37,974
28,557
21,273

This highlights where characteristics of current populations are

Roads and Property

*NEARLY \$200 BILLION IN TAXABLE PROPERTY IS IMPACTED IN THE CURVE 5 SCENARIO

*NEARLY 40% OF ROAD LENGTH AFFECTED IN CURVE 5 ARE DESIGNATED EVACUATION ROUTES

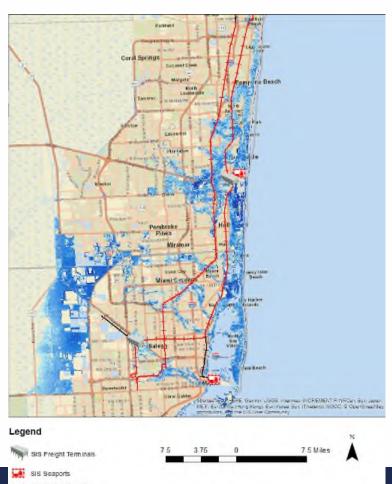


Summary of Road Inventory and Parcels	Length of Road Inventory Affected	Length of On- System FDOT Road Network Affected	Length of Designated Evacuation Routes Affected	Count of Property Parcels Affected	Area of Property Parcels Affected (Acres)	Sum of Taxable Property Value Affected
Low Risk Scenario (SLR C1)	4.5 miles	3 miles	3.5 miles	17,853	720,589	\$2,840,396,372
Moderate Risk Scenario (SLR C3)	274 miles	53 miles	87 miles	149,125	1,786,740	\$51,386,624,960
High Risk Scenario (SLR C5)	1,102 miles	260 miles	431 miles	493,486	2,878,609	\$194,933,075,402

Critical Infrastructure

Why Focus on Vulnerable Critical Infrastructure?

Facilities/Infrastructure	Total (Statewide)	2080 LOW	2080 MODERATE	2080 HIGH
Transportation Infrastruct	ure/facilities			
Seaports	15	4 (26.66%)	9 (60%)	12 (80%)
Airports	18	1 (5.5%)	2 (11%)	6 (33%)
Emergency Response facil	ities			
Fire Stations	2125	0	13 (0.6%)	56 (2.6%)
Police Stations/Law enforcement	994	0	5 (0.5%)	35 (3.5%)
Hospitals	349	1 (0.28%)	2 (0.57%)	2 (0.57%)
Schools	8552	0	14 (0.16%)	127 (1.48%)



Intermodal Rail Service

Table 13 Sea Level Rise Table FDOT District 5

Railroad	Name of Corridor	County Impacted	Miles of Track Impacted	Impacted by SLR C1	Impacted by SLR C3	Impacted by SLR C5
CSX	A-Line	Volusia	40 Miles	No	No	Yes
Florida East Coast	FEC Mainline	Brevard	70 Miles	No	Yes	Yes
		Volusia	44 Miles	Yes	Yes	Yes

(FDOT, 2017, 2018), (GeoPlan Center, 2014, 2017)

Post Study and Collaboration

- Florida Transportation Plan Long Range Visioning
- Community of practice
- **Support** to Florida Transportation Plan subcommittees (Technology & Resilience)
- Framework for incorporating resilience into FDOT's work:
 - Identifying future research needs
 - Providing tools and resources

Contact Information

Jennifer Z. Carver, AICP

Florida Department of Transportation Office of Policy Planning 850.414.4820 Jennifer.carver@dot.state.fl.us

Tia A. Boyd

University of South Florida Center for Urban Transportation Research 813.974.5324 tiaboyd@usf.edu

Dennis J. Smith, AICP

Florida State University Department of Urban & Regional Planning 850.645.7170 djsmith3@fsu.edu

Ruth L. Steiner, Ph.D.

University of Florida Department of Urban and Regional Planning 352.294.1492 rsteiner@ufl.edu